Stability of Solitary Waves for a Generalized Derivative Nonlinear Schrödinger Equation

نویسندگان

  • Xiao Liu
  • Gideon Simpson
  • Catherine Sulem
چکیده

We consider a derivative nonlinear Schrödinger equation with a general nonlinearity. This equation has a two parameter family of solitary wave solutions. We prove orbital stability/instability results that depend on the strength of the nonlinearity and, in some instances, their velocity. We illustrate these results with numerical simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability in H 1 of the Sum of K Solitary Waves for Some Nonlinear Schrödinger Equations

In this article we consider nonlinear Schrödinger (NLS) equations in R for d = 1, 2, and 3. We consider nonlinearities satisfying a flatness condition at zero and such that solitary waves are stable. Let Rk(t, x) be K solitary wave solutions of the equation with different speeds v1, v2, . . . , vK . Provided that the relative speeds of the solitary waves vk − vk−1 are large enough and that no i...

متن کامل

Multi fluidity and Solitary wave stability in cold quark matter: core of dense astrophysical objects

Considering the magneto-hydrodynamic equations in a non-relativistic multi uid framework, we study the behavior of small amplitude perturbations in cold quark matter. Magneto-hydrodynamic equations, along with a suitable equation of state for the cold quark matter, are expanded using the reductive perturbation method. It is shown that in small amplitude approximation, such a medium should be co...

متن کامل

Stability and Evolution of Solitary Waves in Perturbed Generalized Nonlinear Schrödinger Equations

In this paper, we study the stability and evolution of solitary waves in perturbed generalized nonlinear Schrödinger (NLS) equations. Our method is based on the completeness of the bounded eigenstates of the associated linear operator in L2 space and a standard multiple-scale perturbation technique. Unlike the adiabatic perturbation method, our method details all instability mechanisms caused b...

متن کامل

No stability switching at saddle-node bifurcations of solitary waves in generalized nonlinear Schrödinger equations.

Saddle-node bifurcations arise frequently in solitary waves of diverse physical systems. Previously it was believed that solitary waves always undergo stability switching at saddle-node bifurcations, just as in finite-dimensional dynamical systems. Here we show that this is not true. For a large class of generalized nonlinear Schrödinger equations with real or complex potentials, we prove that ...

متن کامل

Simplest Equation Method for nonlinear solitary waves in Thomas- Fermi plasmas

The Thomas-Fermi (TF) equation has proved to beuseful for the treatment of many physical phenomena. In this pa-per, the traveling wave solutions of the KdV equation is investi-gated by the simplest equation method. Also, the effect of differentparameters on these solitary waves is considered. The numericalresults is conformed the good accuracy of presented method.    

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Nonlinear Science

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013